Lihang Liu

+1(984)268-6112 | Iliu45@ncsu.edu www.linkedin.com/in/caffcen | https://caffcen.github.io

EDUCATION

North Carolina State University

Raleigh, USA

Program: Ph.D. of Computer Science 08/2025-Expected Graduation: 05/2030

Northwestern UniversityProgram: Master of Computer Science
Evanston, USA
09/2019-05/2021

South China University of Technology (SCUT)

Guangzhou, China

Program: Bachelor of Engineering in Computer Science and Technology 09/2015-07/2019

PROFESSIONAL SKILLS

Programming Skills: Proficiency in C/C++, Java, Python, SQL, Shell; Familiar with CUDA, Shell, Go

Framework & Techs: Proficiency in Redis, Pulsar, Kafka, ELK, Nginx, Spring Boot; Familiar with AWS, Alibaba Cloud

Research Interests: Distributed Systems, Database, Data-Intensive Applications & Systems, Computer Systems, Systems for AI & AI for Systems

WORK EXPERIENCE

Alibaba - ICBU (International Core Business Unit)

10/2023-03/2024, Hangzhou, China

Position: Senior Software Development Engineer

ICBU AI Agent Development Platform—R-Lab

Accelerated AI agent development by leading the designing and implementing a production-ready agent framework
based on <u>LangChain</u> architecture, enabling the whole department to migrate AI tasks to agent-based workflows
within 1 month.

alibaba.com LLM-Powered Search & Recommendation System

• Enhanced search accuracy and reduced query response time to <200 ms by architecting and deploying LLM-powered intent recognition and retrieval system using *ReAct* Agent Framework, serving 250K+ daily active users on *alibaba.com*.

<u>Tencent - Tenpay</u>

07/2021-09/2023, Shenzhen, China

Position: Software Development Engineer, WeChat Pay HK

WeChat Pay HK Data Observability Platform

- Transformed team from zero data visibility to comprehensive business intelligence by architecting distributed log aggregation platform, enabling our team to perform multi-dimensional analysis on 30+ metrics across user behavior and payment channels, processing 10M+ events daily with 99.99% reliability and <100ms latency.
- Pioneered team's cloud infrastructure adoption as first engineer to integrate Tencent TDMQ (Pulsar) and Tenpay's
 new logging platform, authoring 5+ technical documents and establishing architectural patterns for multi-platform log
 distribution (ELK, data warehouse, BI), adopted by 20+ subsequent microservices.

WeChat Pay HK Native Payment Infrastructure Upgrade

- Reduced payment failure rate by 30% and improved transaction completion time from seconds to <1 second by
 migrating H5-based payment flow to native WeChat client integration, orchestrating collaboration across 4 teams
 (WeChat Guangzhou, WeChat Pay HK Shenzhen/Hong Kong, Tenpay Cryptography).
- Enabled offline payment capability for **700K**+ users in low-connectivity areas (subways, shopping malls) by architecting an algorithmic code system with pre-loaded cryptographic seeds, achieving **99%** transaction success rate in 3G/offline scenarios and resolving CEO-reported UX issues.

WeChat Pay HK Payment Method Service Modernization

• Improved system maintainability and reduced feature development time by 40% by leading complete migration of

- payment method integration service from legacy C++ service framework to tRPC-Java microservices, supporting 3 new payment integrations within 2 months.
- Enhanced code reusability and decreased code complexity by implementing various design patterns (BFF, Builder, etc.), establishing 4+ reusable components adopted across microservices.

RESEARCH EXPERIENCE

FORECAST - HPC Network Congestion Forecasting

09/2025-Present

- Designed fault-tolerant CR detection pipeline achieving 93% parallel efficiency at 64 cores through stateless worker architecture, Parquet checkpointing, and Jaccard-based temporal CR merging (0.5 overlap threshold), reducing peak memory from 15GB to 500MB per processing unit.
- Developed Spatio-Temporal Graph Neural Network (STGNN) for HPC congestion propagation forecasting, combining GRU temporal encoding, GAT spatial convolution, and multi-head attention to predict propagation probability, rate, and severity across 41,472 network links with >75% target accuracy.

Advanced Persistent Threat (APT) Defense System Research

09/2020-04/2021

Lab: Northwestern Lab for Internet and Security Technology

- Achieved 94% detection accuracy and <5% false positive rate by implementing real-time APT defense system using provenance graph and tag propagation techniques, capable of analyzing 100K kernel events per second.
- Enhanced system resilience by identifying **10**+ critical vulnerabilities through simulated APT attack scenarios using **BeEF** penetration testing framework.
- Validated system effectiveness against known APT attack patterns by collecting kernel tracing data via *LTTng* and testing with both simulated and open-source APT datasets, achieving 90%+ threat detection coverage.

Linux Whitelist System Research

07/2018-08/2018

Lab: Northwestern Lab for Internet and Security Technology

- Improved system security configuration flexibility by developing a kernel-level whitelist system using *ftrace* and proc filesystem, enabling administrators to manage whitelist executables without system restart.
- Prevented unauthorized process executions during testing by implementing *ftrace*-based *sys_execve* hooking mechanism, achieving **300**µs overhead per process creation.